

PRESENT AND FUTURE: THERMAL RECOVERY TECHNOLOGIES

STEAM QUALITY

Steam quality is one of the main parameters within thermal recovery projects, since it is a direct measure of the efficiency of the heat transmission process into the reservoir with highly viscous crudes. The essence of the Enhanced Oil Recovery projects is focused on affecting the residual oil saturation and with this achieving a significant increase in the Recovery Factor of the hydrocarbon in place of heavy oil fields. The effectiveness in the process of heat transmission to the reservoir is directly proportional to the quality of steam obtained during the injection under its different schemes such as Alternate Injection, Continuous Injection, SAGD, HASD, etc. Thus, obtaining high steam qualities above 80% is strictly necessary; It should be noted that conventional OTSG generators have certain limitations in their design and operation which limit reaching high quality values.

To address this technological challenge, Nakasawa has developed the **Super Matroid Heater Technology which allows 95%** Quality to be delivered to the equipment's output, generating dry steam without loss of condensate, without generating effluents or loss of mass,

obtaining an extra 12% of heat and 15% more steam quality, increasing the profits of oil produced, which translates into a projection of higher income.

CONVENTIONAL SYSTEMS (OTSG) VERSUS SUPERMATROID HEATER (SMH)

The high-quality steam system consists of a high-efficiency cyclone steam separator, super heater tube bundle, mixers with control valve, and steam-quality sampling system. Nakasawa's SMH process involves controlled condensate separations and remixes to achieve steam quality up to 95%, so there is no condensate loss, and the total mass goes to the system outlet and injection point.

The Super Matroid Heater presents various technical and economic advantages compared to the use of conventional systems, highlighting:

- Generates + 12% Extra Heat
- Save 9-12% less treated water.
- Decrease of 12 to 20% of operational expenses and injection days.
- Generates 9 to 15% extra oil produced, due to the extra heat injected into the field.
- It is the only technology that guarantees 95% steam quality with that amount of TDS.
- Conventional Technology cannot guarantee to generate 80% of Surface Quality with TDS of 8,000 to 10,000 TDS

9				
	MAIN FEATURES	NK-SMH 95% SQ	OTSG 80%	
,	STEAM GENERATION ADVANTAGES			
5	STEAM QUALITY	95%	<80%	
	THERMAL EFFICIENCY	<u>88-92%</u>	<88%	
Ś	INJECTED STEAM	12 % Extra	Nominal Capacity	
L	FUEL CONSUMPTION	Saving 12%	Nominal Capacity	
	TREATED WATER	9 - 12% lower	Nominal Capacity	
	OIL PRODUCTION AND HEAT INJECTION ADVANTAGES			
	OIL PRODUCTION (STB/D)	9 - 15 % Extra	Lower	
	CUMULATIVE PRODUCTION	10 - 15 % Extra	Lower	
-	ENERGY TO THE RESERVOIR	Higher	Lower	
	HEAT TRANSFER	Higher	Lower	
,	STEAM QUALITY @ 4000' TVD	0,8	<65%	
	HIGHER TDS MANAGEMENT ADVANTAGES			
	TDS HANDLING	4000 - 10000	<4000	
	MAINTENANCE	Regular Frequency	Higher Frequency	
	CONDENSATE SEPARATION FOR THE FINAL PHASE	No Generation	No Generation	
	GENERATED EFFLUENTS	No Generation	No Generation	
	TOTAL SOLID AT THE SYSTEM OULET	-	-	
	SOLID PRECIPITATION (SCALE)	No Generation	No Generation	
l	SURFACE FACILITIES STEAM INJECTION ADVANTAGES			
	SURFACE HEAT LOSSES	Lower	Higher	
	STEAM QUALITY IN THE WELL HEAD	Higher	Lower	
t	STEAM QUALITY WITH THE GENERATOR PLACED 3	059/	700/	
	KILOMETERS FROM THE WELL HEAD	85%	70%	
	MATERIALS AND DESIG	N ADVANTAGES		
/	TURINGS (MATERIALS	SA213 T12	SA106 Seb 160	
	TOBINGS / WATERIALS	more resistant	SA100 Sch.100	
	TUBING QUALITY	chrome - nickel alloy	Less Resistant	
ś	RADIANT SECTION TURING SUPPORT	25 % chrome and 20	Less Resistant	
	NADIANT SECTION TODING SUFFORT	% nickel alloy	Less Resistant	
	SUPPORT RING	Protective Insulation	Less Resistant	
	GENERATOR HOUSING	Anticorrosion	Less Resistant	
	H2S DETECTOR	Included	Not Included	
	COST AND REVENUES	ADVANTAGES		
	OPERATIONAL COSTS (decrease of injection days)	Decrease 12%	Increase	
	REVENUES (higher cumulative oil production)	Increase 12%	Decrease	